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Summaiy
Two prellmlnaiy testestimators ofregression coefficienthave been

s^ested In the Unear model Y- y+Px +e, assuming (X,Y) to follow a
blvariate normal distribution. Preliminary test ofequality ofvariances of
Xand Yis conducted using Morgan's t-fBst[161 and suitable estimator

T.u outcome ofthe prellmlnaiy test. Bias andMSE Qf &e proposed estimators arederived. Recommendations onthe
choice ofsample size and level ofpreliminary testaremade on the basis
ofnumerical values ofbias and relative efficiency with respect to sample
regression coefficient. ^

Key ux)rds : Linear model, Morgan's t-test, Wlshart density
Hypergeometrlc function. Beta function, Kamp de Ferlet function!
Prellmlnaiy test.

Introduction

paper byBancroft [4], various preliminary test
^T) procedures have been studied by Mosteller |[17], Han and
Bancroft [7], Al-Bayyati and Arnold [3], Ahsanullah [1]and others.
These procedures have been applied in regression analysis also.

One group of researchers have used PT to decide about the
number of regressor variables to be retained in the model (cf
Kitagawa [11 ] Larson and Bancroft [13] [14], Kennedy and Bancroft
110] etc. Another group ofresearchers used PT to judge the validity

knowledge about themodel (Rahim [18]. Johnson, et.
al [9^have used PT ofequality of two regression lines to decide
whether to pool or not to pool the second data also for estimating
the regression line for one data set. Relative efficiency of the
proposed estimator isobtained andrecommendations onthechoice

StSTed ^specified efficiency is
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Estimation of regression coefficient and intercepts after a PT of
parallelism of several regression lines has been considered by Han
and Bancroft [8] and Lambert et al. [12]. Akritas et. al. [2] have
considered a non parametric approach to the same problem.

Shukla [26] hasconsidered thecase when two random samples
of different sizes are available from two linear models, with X, a
known or controlled variable and the dependent variable Yhaving
equalvariance o^.

In this paper the simple linear regression model y= y+ Px + e
has been considered; assuming that (x, y) has bivariate normal
distribution with parameters [ix . [Xy , and p .The estimate
ofy(the variable under study), depends on the estimated value of/
and p Some times ymay be such that its variability is ofthe same
order as that of independent variable x. For example, it is quite
possible that variances of length and breadth of leaves (say of plum
orbeatle), thebreadthandcircumference ofhumanhead, areequal.

For such variables Ox = Oy so p= p. Hence the sample
correlation coefficient (r) seems to bean appropriate estimator ofp.
However, though r seems to be appropriate, the m.l.e. ofp, under
this condition turns outtobe2si2/(sl + si) (cf. Mehta andGurland
[151.

IfOx Oy the m.l.e. for pis the weU known sample regression
coefficient b. In practice as one is not sure of the equality of
Ox and Oy, an uncertainty prevails regarding the choice of an
estimator for p. So first a preliminary test of Ho ; Ox = Oy is
conducted on the basis of available sample and the estimator is
chosen according to the outcome of the test. Two PT estunators
P and P have been proposed, Tising r and 2si2/(si + S2)
respectively and integral expressions for the bias and mean squared
error (MSE) have been obtained. Series expressions have also been
obtained. In addition, numerical comparison ofthe two estimators
with the usual estimator b has been undertaken.

2. Proposed Preliminary Test.Estimators
Consider arandom sample (xi, yi), i=1, 2, . . .^N from abivariate

normal distribution with parameters \x^ , ^y . ol , Oy and p. Let
V=Y + Px + ebe the regression model and it is desired toestimate
P In practice one may suspect the equality ofthe variances firom the
nature ofthe data. So first a testofHo : ol- a^y may be performed
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to resolve the uncertainty, using the t-test suggested by Morgan [16].
This test rejects Ho at level a if

{s\ - si)
1/4

> t^2

2(s\ si - sil)
N

where s? = - ^ (xi - . s| = - J (y^ - y)^
1=1 1=1

«i2= (xi- x)(y.- , x= ^ 2 Xi . y=^i yi

and ta/2 is the upper lOOa/2 percent point of students'
t-distribution with N-2 d.f.

IfHo is rejected the usual sample regression coefficient b is used.
If Ho is accepted the sample correlation coefficient may be used
because it is an estimator ofp. So the first estimator of p is proposed
as

P =
if Ho : Ox = Oy is accepted

otherwise

Sl2

S1S2

S12

Si

if
(s^ - s|) N - 2
2 {s\ si - s]2r-

otherwise

< ta/2

(2.1)

As m.l.e.'s have many optimum properties, one may use
2s 12 ^ instead of r, if Ho is accepted with the hope of larger gain

(Si + S2)

in efficiency. So a second estimator of p may be proposed as

P =

2s 12

S1S2
if

(si - S2) N - 2

2 {si si - sl^r < t„/2

S12

Si
otherwise

(2.2)
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3. Bias and MSE of Estimators

For evaluating the bias and MSE of p and ft one may use the
following result:

Lemma. Let T, Tj and T2 are functions of random vector X with joint
p.d.f. p(x) such that

Ti if X £ A

T2 otherwise

Then

E(T) =E(T2) +/•••./ (Ti - T2) p(x) dx
(3.1)

Proof: It can be easily seen that

E(T) =/•••/ (Ti) p(x) dx + /. . ./ (Ta) p(^^ dx =r.h.s. of (3.1).
A a'

Both p and P are of the same form as T with A replaced by R, the
acceptance region of Hq. The joint density of s^ , S2 . S12 is given
by the Wishart density (cf. Mehta and Gurland (1969)

1-,

f(Si , S2 , S12) = K (S^ si - Si2)2"^

,2 „2

- |n(1- pV 3 + 3-exp

where
rN-lN'

K

4:t[(N-2) gI (1 -

Hence using (3.1) one can write

Si
E(p)=

S12
*ns

R

S12

S1S2
/ \

= E(b) + li' = p + 1{

S12

OxOy

f (s'l , si S12) dsi ds2 dsi

(3.2)

(3.3)

E(h= E(b') +/// S12

si s\
f(s^ S2. S12) dSi dS2 dSi2
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E(b^)'') +l2= f 1!" U
(N - 3) (3.4)

E(P)= E(b)+J/J si2 ( 2 1\
Sl+ S2 Si

f(si, si, Si2) dsi dsl dsi2

= E(b) + Ji' = P +

f 4

(s?+sif ~ st

(3.5)

E(P^) = E(b^) +fff s^ f(si. si, Sia) dsi dsa dsi2

Oy(l - P^)
Ox(N- 3)

.2 /.TVT 0\ + + Ji

Applying the transformations TR; and TRg given by

TRi : u = -2—^ , V= sj + S2 and w= si
Si + SoSi + S2

TR2 : u = u . V= V and w = v (1 +t VI - u'')

successively on Ij' in (3.3) we get

where

K
^1' = (u. t) v^- '̂ exp [ -a (p4 (u, t) v] dv du dt

h 1

-h-1 0

CP3 (U, t) = U (1- 1-
1+tvrn?"

1 - t/T^

(1 - 1 -t= '̂(l -

/(P4 (u, t) = d+ c tVl- u" +gu, a = n/4 (i_ p2) ^2 , d = 1+
o,•yj

(3.6)

(3.7)

(3.8)
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C =
-2 pOx

and
t^.;/2

t^/2 + N- 2 (3.9)

Integrating innermost gamma integral w.r.t.v and substituting t=hz,
(3.9) can be reduced to even more convenient form for
Gauss-quadrature formula as

1 1

Kr(N-l)hrr 93 (u. hz)

N-2
Ck= (N-2)2

old-p'^)
4n-1

h

K (3.11)

Thus integral expression for bias ofp is obtained. Followingsame
lines after applying TRi and TR2 on I2 , J'l and J2 integrating over
Vas gamma integral and substituting t=hz

=Ck }}[ du dz =Ck I2 .
(3.12)

Ji= - hCk r f (u.hz) ^ Q j
_Vcp4(u.hz)r (3.13)

=-hCk J J qps Cu. hz) du dz =-h Ct J2
_i _i ['P4 (u, hz)] (3.14)

where

(P6(u.t)=u=^(l-u^)i^^- '̂(l-t^)>-''' /i-tvnn?" .
r -1l+tVlTir

(P7(U. t) = U(1- (- t) (1- t')!'"'"'' (1- t\n^)"'

(P8(u. t) =u"(l- (- t) (1- t^)i<~-'̂ '(2- t/THF)"

-2

(i-tvrnT)
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(3.12) gives the integral expression for bias ofp.

Now MSE{p) =E(P- pf = E(P'') + 2p E(P).

Using(3.3), (3.4), (3.10) and (3.12) integral expression for

Ckli
(3.15)

and from (3.5), (3.6), (3.13) and (3.14) inte^al expression for

h Cit Ji
! \

o (3.16)

Series expressions can also be obtained by expanding
expl- a(p4(u,t)v] before integrating on v. The expressions are quite
lengthy so are given in Appendix alorigwith their derivation.

4. Relative F^iciencies, of p and P

Let ei and e2 denote the relative efBciencies of P and P with
respect to b. From (3.15)

Oyd-P')
V(b) Ox (N- 3)

^ ,3.17,

and from (3.16)

V(b) Ox (N- 3)
MSE,P)- 4^.,

Ox (N- 3)

Thus integral expressions for relative efficiencies of p and P with
respect to b are obtained.

5. Numerical Findings

To calculate bias and efficiencies of the estimatiors p and P the
integrals Ii, I2. Ji and J2 have been evaluated by applying 20 points
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Gauss-Legendre quadrature formulae of the inner and the outer
integrals.

The nurherical values of the bias and efficiencies of the two
2

estimators have been obtained for N= 5, 10, 20. 30; ^ = .25(.25)
1.50, 2.00, 4.00; p = 0.00. ±0.10. ±0.25. ±0-50. ±0.80; a = .05
.20, .50 and .80.

Theefficiencies ofthe two estimators for+ pare the sameas that
for -p and thebiases ofthetwo estimators for +pis negative ofthat
for -p. The tables are quite extensive so onlytwo tablles have been
given showing bias and efficiencies of p and P for N = 5 and N=30.
Table 1 shows the bias for nisgative values of p and Table 2 shows
the eflficfencies.

It is found that for p = 0. both the PT estimators are unbiased
for p. This is clear from,(3.9) and (3.13) because integrand becomes
an odd function of u when g = 0. Nature of bias of both the PT
estmiators is identical. Bias decreases with increasing a and N, and
decreasing magnitude of p. Bias is quite small except for small
sample size and lowvalue ofa. So if sample size Ns 5 . a should be
preferably greater than or equal to .50.

OxIf^ a 1.25 bias of pis usually less that that of p. Thus, in the
case ofinequally ofthevariances ifol is suspected tobelarger, use
of p reduces the bias.

The variation of efficiencies of the two estimators is also more or
less identical.

Both the estimators are more efficient than the usual estimator
2

ifOx = Oy for all N, a and p. Forthe value of-f = 1.00and 1.25, the
Aefficiency ofpdecreases with increasing a, whereas for a given a. it

decreases with decreasing value of | p |. Efficiency ofp in this case
also varies almost similarly except that for N=5, it again increases

2

after = |p| .5. For other values of^ . iffor a =.05 efficiency <1, it
mcreases with increasing a and if efficiency >1, it decreases with
a. For a given a., inthiscase the efficiency increases with decreasing
value of-IpI. The efficiency of both the estimators is highest if
Ox = Oy for all N, and this decreases with increasing N (except for
P = ±.8).
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Oy

It is found that p is more efficient than P if ^ £ 1 and | p| is
Oy

large. This range over ]p| increases with increasing sample sizes.
Thus if is suspected to be larger, use of Pwill be more beneficial
from efficiency point of view also.

If 1pIs .10 both the proposed estimators are preferable to the

usual estimator if-f s 1.00 with any value ofa.
Oy

For small samples (N=5) the efiBciency is generally larger than 1
^2

if IpI is not very large and -f is not very large.

Increase in N, though increases the highest efficiency but it
al

narrows the range of | p | and where the estimaators are more
Oy

efficient than b.

6. Recommendations.

On the basis of the above numerical firldings we recommend that

(i) Both p and p may be used with advantage with relatively
smaR N and a i. e. for Ns 10 , as .20.

(ii) If is expected to be larger than Oy. P should be preferred
to p. p should be used if Ox is feared to be less than Oy.

(iii) In c^e the reduction in bias is considered more
important, a > .50 should be chosen.

(iv) If Ip I < .10 and Ox is expected to be smaller than Oy any
value of a may be chosen for gain in efficiency.
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Table 1. Biasof^ and P
N = 5

a P .25 .50 .75 1.00 1.25 1.50 2.00

-.80
.32

.38

.24

.29

.13

.16

.3(1)

.6(1)
-.3(iy
-.3(3)

-.8(1)

-.4(3)

-.13

-.8(1)

.05 -.50
.24

.29

.16

.20

.18(1)

.12

-.3(1)

.6(1)

-.6(2)

.2(1)

-.3(1)

-.4(2)

-.7(1)

-.4(1)

-.10
.5(1)
.6(1)

-.3(1)

.4(1)

.2(1)

.2(1)

-.8(2)

.1(1)

.2(3)

.7(2)

-.5(2)

.1(2)
-.1(1)
-.1(2)

-;80
.7(2)
.8(2)

.1(1)

.2(1)
.1(1)

.1(1)

.3(2)

.7(2)

-.4(2)

-.6(3)

-.8(2)

-.5(2)
-.1(1)
-.8(2)

.50 -.50
.8(2)

.9(2)
.1(1)

.1(1)

.8(2)

.1(1)

.3(2)

.6(2)

-.9(3)

.2(2)
-.4(2)

-.9(3)

-.6(2)

-.4(2) •

-.10
.2(2)

.2(2)

.2(2)

.3(2)

.2(2)

.2(2)

.7(2)

.1(2)

-.1(3)
.6(3)

-.6(3)

.0(4)

-.1(2)

-.6(3)

-.80
.3(3)

.3(3)

.8(3)

.9(3)

.7(3)

.9(3)
. .2(3)
-.4(3)

-.2(3)
-.9(4)

-.5(3)

-.3(3)

-.6(3)

-.4(3)

.80 -.50
.4(3)

.4(3)

.6(3)

.7(3)

.4(3)

.6(3)

.2(3)

.3(3)

-.1(3)

.1(3)

-.2(3)

-.1(3)
-.4(3).
-.2(3)

-.10
.1(3)

.1(3)

.1(3)

.2(3}
.1(3)
.1(3)-

.0(4)

.1(3)

.0(4)

.0(4)

.X)(4)

.0(4)
-.1(3)
-.0(4)

N = 30

o^/o^
a P .25 .50 .75 1.00 1.25 1.50 2.00

-.80
^ .4(4)

.0(4)

.2(1)

.3(1)

.6(1)

.7(1)

.4(2)

.7(2)

-.5(1)

-.4(1)

-.5(1)
-.5(1)

-.2(1)

-.2(1)

.05 -.50
.2(2)

.2(2)

.5(1)

. .5(1)

.5(1)

.5(1)

.5(2)

.4(2)
-.3(1)

-.3(1)

-.5(1)

-.4(1)

-.4(1)

-3(1)

-.10
.1(2)

.1(2)
.1(1)

.1(1!

.1(1)

.1(1)

.1(2)

.2m-

-.6(2)

-.5(2)
-.1(1)
-.8(2)

-.9(2)

-.8(2)

-.80
.7(7)

.8(7)

.4(3)

.4(3)

.4(2)

.4(2)

.4(a)

.7(3)

-.4(2)

-.4(2)

-.3(2)

-.2(2)

-.3(3)

-.3(3)

.50 -.50
.9(5)
.1(4)

.2(2)

.2(2)

.4(2)

.4(2)

.4(3)

.8(3)

-.3(2)

-.2(2)

-.3(2)

-.3(2)
-.1(1)
-.1(2)

-.10
.8(5)

.9(5)

.5(3)

.5(3)

.8(3)

.9(3)

.1(3)

.2(3)

-.5(3)
-.4(3)

-.7(3)

-.6(3)

-.4(3)

' -.4(3)

' i
-.80

.2(8),

.2(8)

.2(4)

.2(4)

.2(3)

.2(3)

.2(4)

.4(4)

-.2(3)
-.2(3)

-.1(3)

-.1(3)

-.1(4)

-.1(4)

.80 ^
\

-.50
.3(6)

.3(6)

.7(4)

.8(4)

.2(3)

,.2(3)

.3(4)

.5(4)
-.2(3)

-.1(3)

-.2(3)

-.2(3)

-.7(4)

-.7(4)

/

-.10
.3(6)

.3(6)

.2(4)

.3(4)

.5(4)

.5(4)

.7(5)

.1(4)

-.3(4)

-.3(4)

-.4(4)

-.4(4)

-.2(4)

-.2(4)

Note: 1. In,each row and column, first value Is Blas(P) and second one Is Blas(P).
2. Integers In bracket are the power of 10 by which the preceding value Is

to be divided.
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Table 2. Efflclencles ofp and P
N = 5

o^/o^
a P .25 .50 .75 1.00 1.25 1.50 2.00 4.00

.80
.72

.65

.99

.90

1.35

1.27

1.53

1.50

1.45

1.49

1.25

1.34

.88

1.04

. .42
.62

.05 .50
1.08

1.05

1.29

1.29

1.37

1.41

1.34

1.42

1.25

1.36

1.15

• 1.28

.96

1.11

.58

.78

.10
1.26

1.30

1.40

1.48

1.38

1.49

1.30

1.43

1.20

1.34

1.11

1.26

.95

1.12

.63

.83

.80
.99

.98

.98

.97

1.00

1.00

1.03

1.02

1.03

1.03

1.02

1.02-

-.99

1.00

.95

.97 .

.50 .50
1.00

i.oq
1.01

l.dl
1.01

1.02

1.02
1.02

1.01

1.02

1.01

1.00

1.00

.98

.97

.98

.10
1.01

1.01

1.01

1.01

1.02

1.02

1.01

1.02

1.01

1.02

1.00

1.01

.99

1.00

.97

.98

.80
1.00

1.00_.
1.00

1.00_
1.00

1.00_
• 1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

i.oo_ •

. .80 .50
1.00

1.00_
1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

i.oo"
1.00

1.00_

.10
1.00

1.00

• 1.00
1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

l.OO

1.00

1.00

1.00_

Note : In each column against a value of p, the first entry Is ei and second one
Is e2.

Indicates actual value below 1 (becomes 1 after rounding to second
decimal place).
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APPENDIX

Series Expressions for Bias and MSE ,

Lemma 2.1 :

where

Ii' = Ci 2; C, 2 c,j I(ij) [a+ IT' B(nji- 1. q,j- 1/2)
r=0 J-O

1:2:1

1:1:0

1:2:1

1:1:0

-F

' jl: 1/^, nji - 1: p:

jl+ l:nri: - :

( jl: l.nji-l:p:

jl+l:n,i:-:

1 1:2:1

h^

( j2: 1. njo: p:

j2+ l:nr2: - :

s=-
ôy

li", h'

5N-2 ,1 „2^^ ^ >.N-12'^-'' (1- p^)— _ rXN+r-U
• F(r+1.) 1+SN-2 1+S

JrV S- IV r-j+ 3 N+ j+ 1Crj=, j (-2p),J . q^=—nji-Jl 2

1 if(r- j) is odd
nrl =

N+ r+ i _ j+ i 4-N

• p=—• =

1:2:1

1:1:0

f f;p, q:r:
h. h

f+ 1: s: - :

0 otherwise

is the Kamp de Feriet function (cf. Rainville [19])

2F1 (a, b; c: x) and B(a. b) are the hypergeometric and the beta
functions respectively.

The exponential term in (3.9) is expanded in series form before
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solving inner most integral in v as garmna Integral. Next putting
u=cos9 and using results from Gradshteyn and Ryzhik [6] pp 286
and 389 on the two terms in inner integral on 0, we get integrals on
t^with range as (O, h®).

Result on page 193 in Exton [5] is applied now and the stated
result in Lemma 2.1 follows.

Any further details may be furnished by the first author on
request.

Lemma 2.2 :

l2 = C{ 2; C, 2 Cfl (1- l(ij) hf [(j+ ir' B(nji- 1, q,j)
r=0 J=0

/ jl: l.nji -l;p;
h^ h''

jl+ 1: ni2: - :

1:2:1

1:1:0

1:2:1
2h^ B(njo. q,j) F

1:1;0

1:2:1

1:1:0

( njo: p:

j2+ 1: Hrs: - :

j3: 2, nji: p;

j3+ 1: nr4: - :
\

Proof is similar to that of lemma 2.1.

Expressions for Jl and J2 also follow similarly.

h^h^

h^h^


